COV886 Special Module in Algorithms: Computational Social Choice

Lecture 9

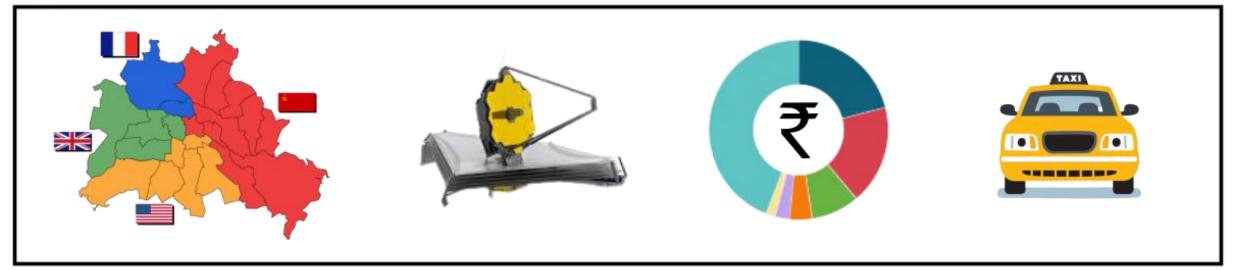
Cake Cutting

March 12, 2022 | Rohit Vaish

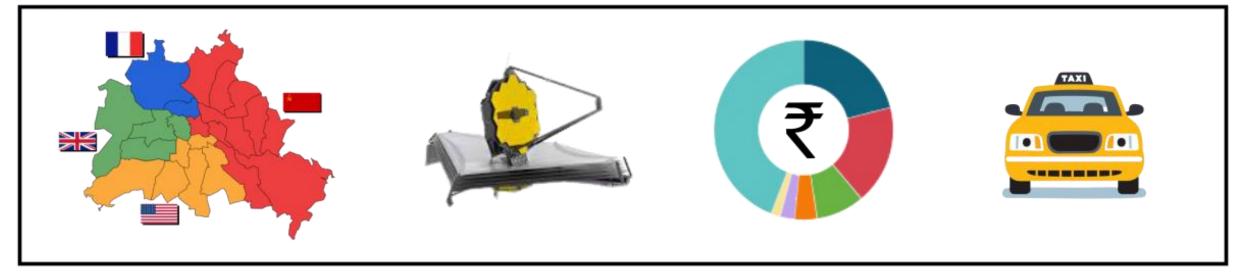
Reminder about starting recording

₹

Divisible

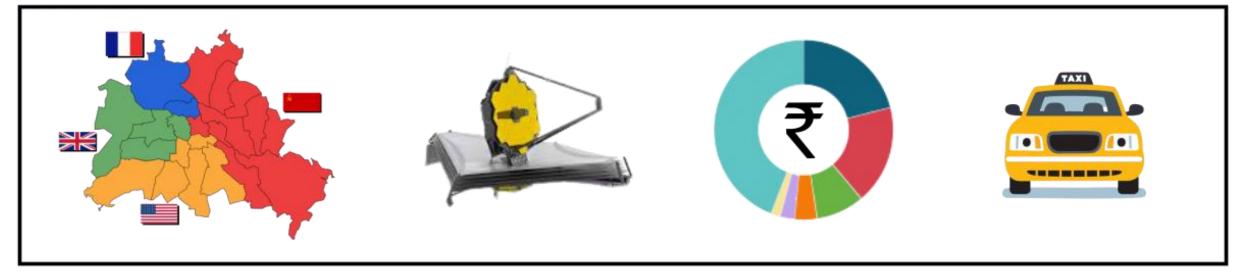


Divisible

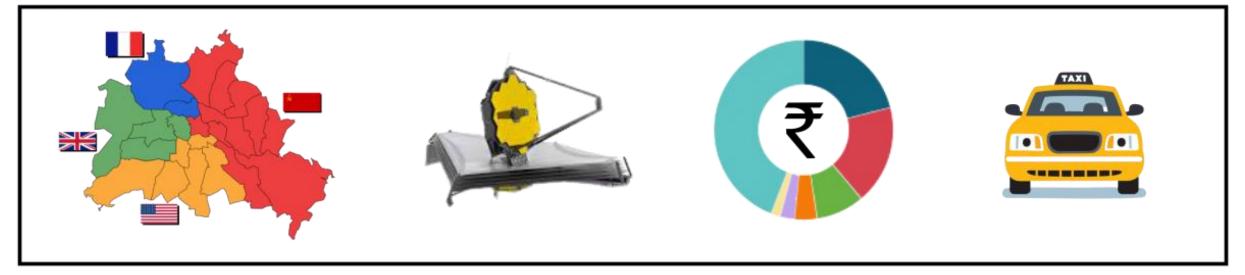


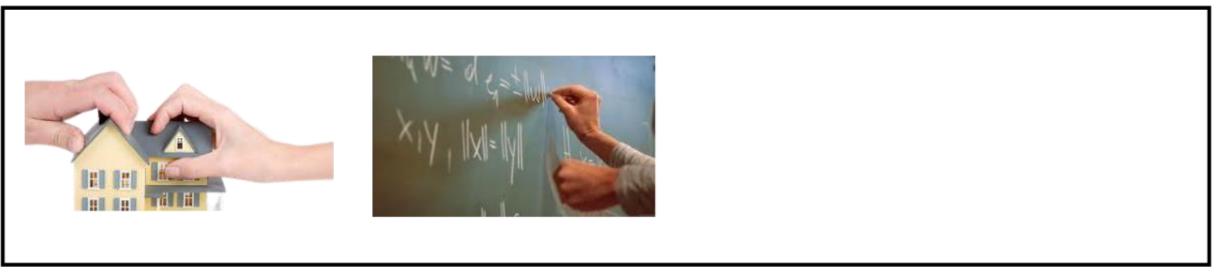
		- I
		- I
		- I
		- I
		- I
		- I
		- I
		- I
		- I
		- I
		- I
		- I

Divisible

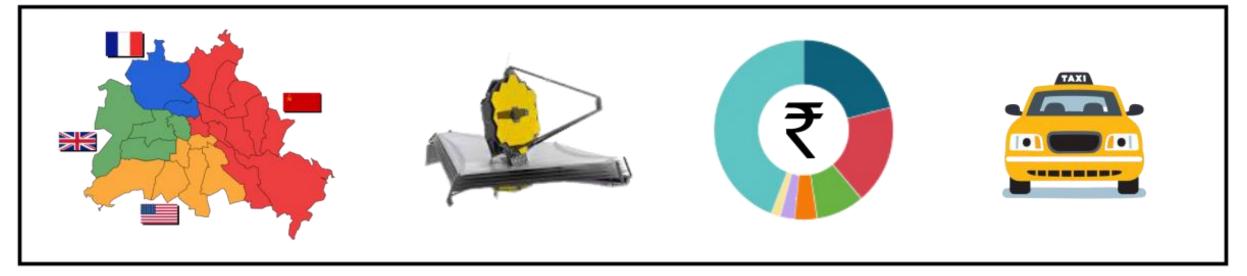


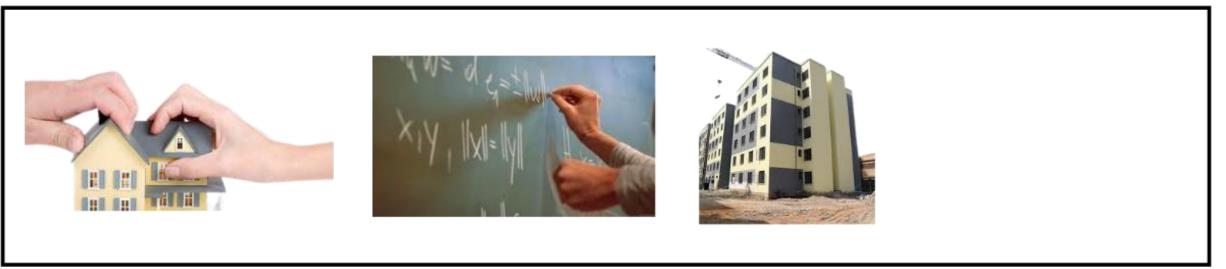
Divisible



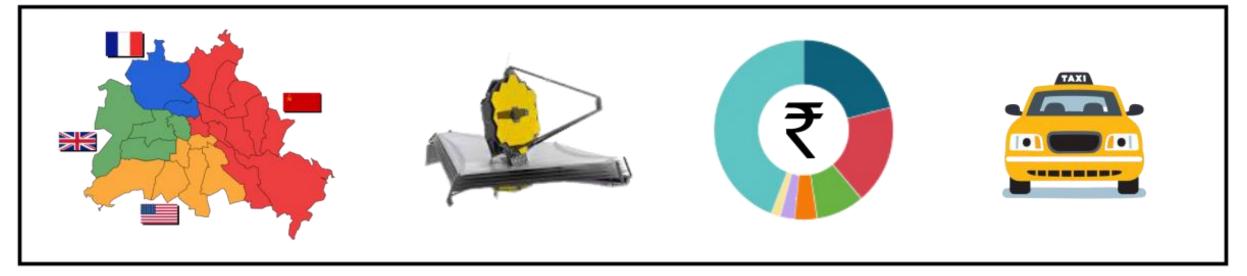


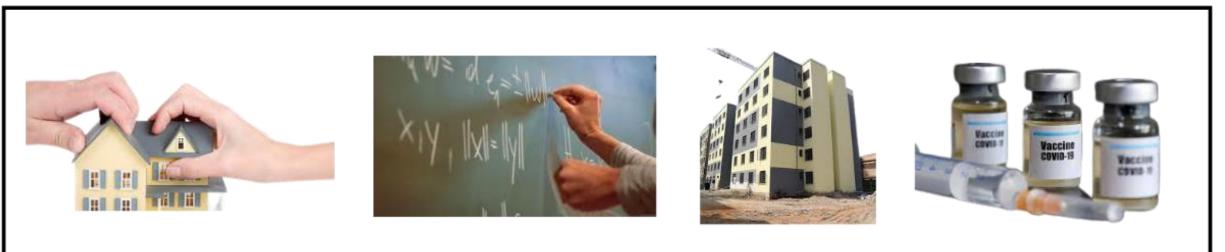
Divisible



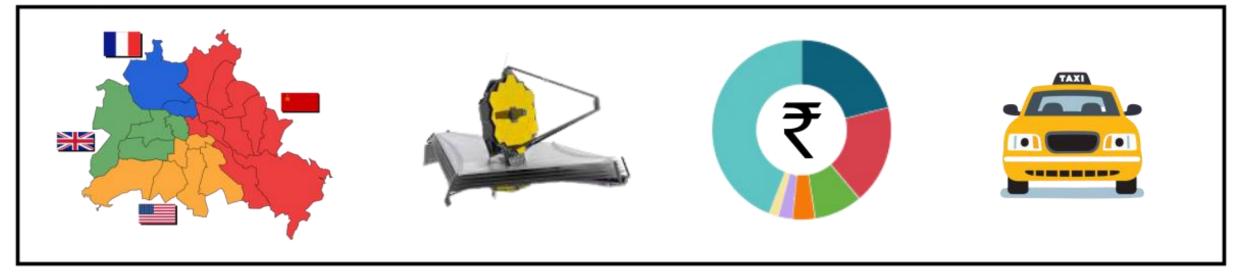


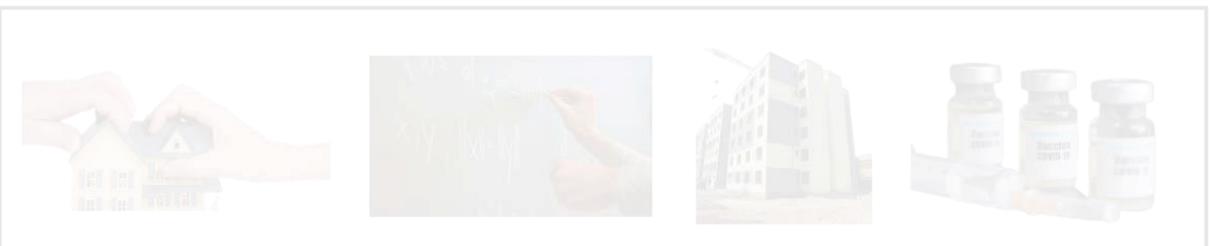
Divisible





Divisible





Fairly dividing a heterogenous, divisible resource among agents with differing preferences

equal amounts of the resource can have different values for an agent

Fairly dividing a heterogenous, divisible resource among agents with differing preferences

equal amounts of the resource can have different values for an agent

any fractional allocation is feasible

Fairly dividing a heterogenous, divisible resource among agents with differing preferences

equal amounts of the resource can have different values for an agent

any fractional allocation is feasible

Fairly dividing a heterogenous, divisible resource among agents with differing preferences

agents need not be identical

• The resource: Cake [0,1]

- The resource: Cake [0,1]
- Set of agents {1,2,...,n}

- The resource: Cake [0,1]
- Set of agents {1,2,...,n}
- Piece of cake: Finite union of subintervals of [0,1]

- The resource: Cake [0,1]
- Set of agents {1,2,...,n}
- Piece of cake: Finite union of subintervals of [0,1]

• Valuation function v_i : Assigns a non-negative value to any piece of cake

Additivity

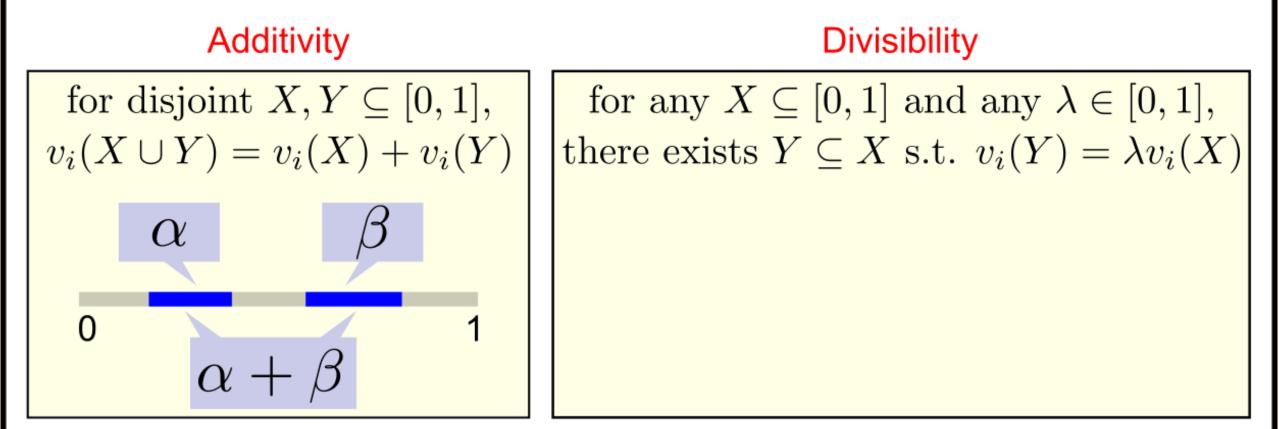
for disjoint $X, Y \subseteq [0, 1],$ $v_i(X \cup Y) = v_i(X) + v_i(Y)$

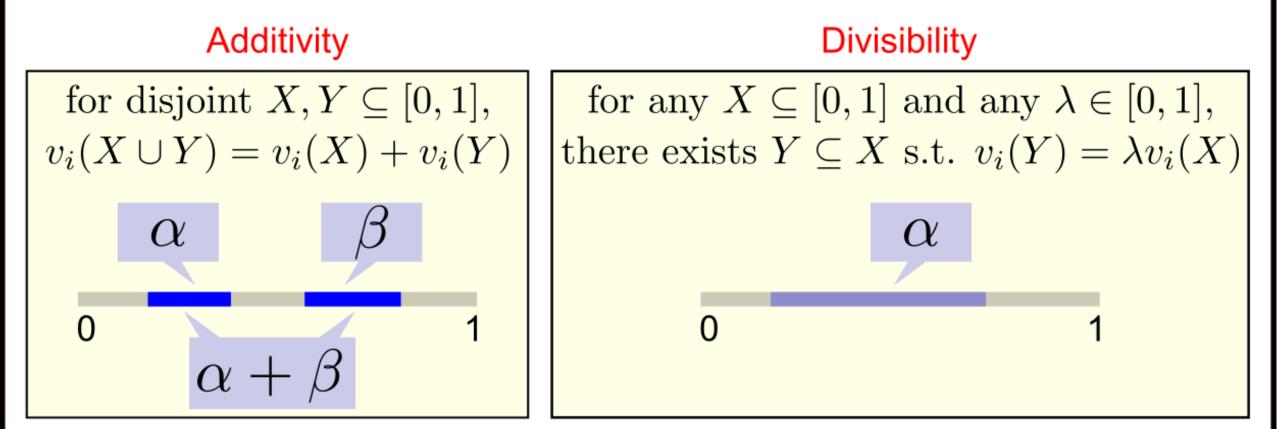
• Valuation function v_i : Assigns a non-negative value to any piece of cake

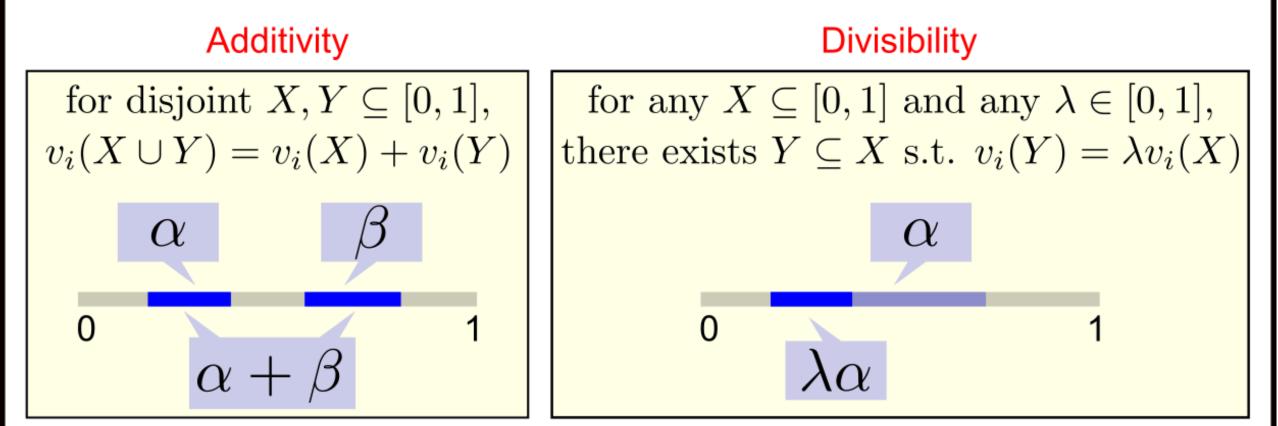
Additivity

for disjoint
$$X, Y \subseteq [0, 1],$$

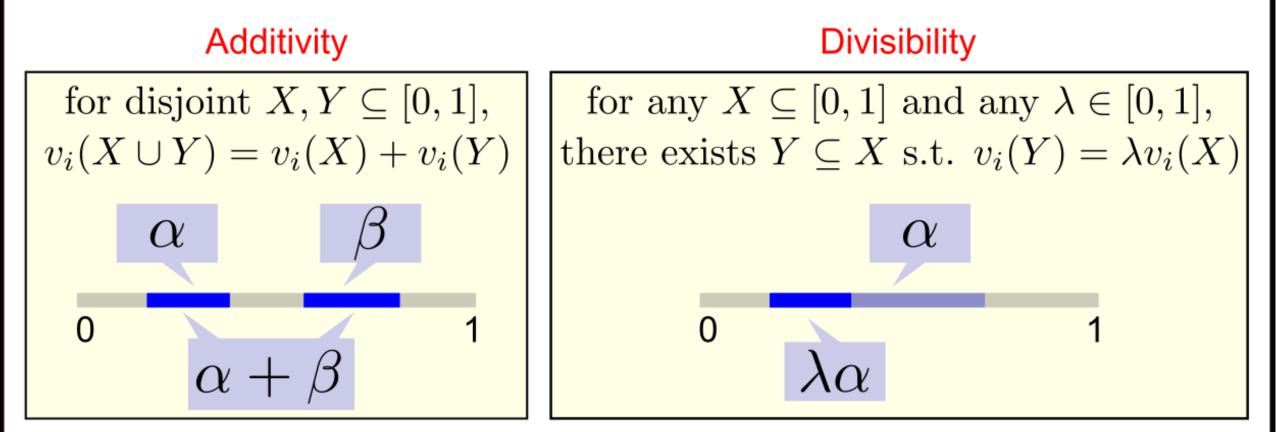
 $v_i(X \cup Y) = v_i(X) + v_i(Y)$
0 β
1
 $\alpha + \beta$





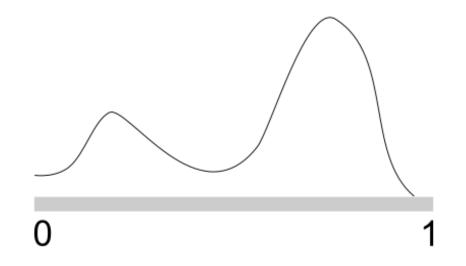


• Valuation function v_i : Assigns a non-negative value to any piece of cake

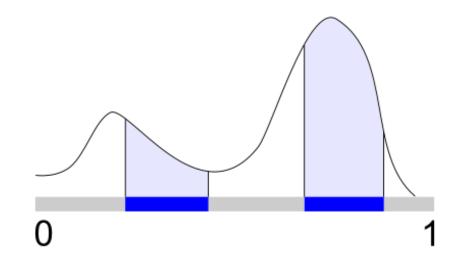


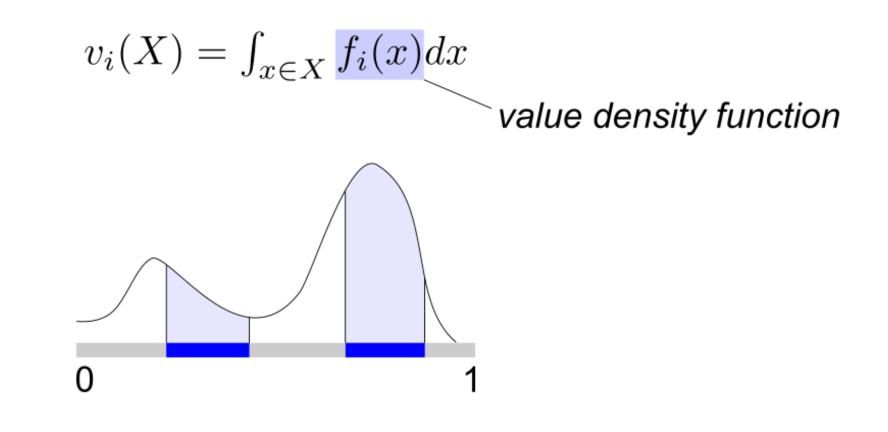
Normalization: for each agent $i, v_i([0, 1]) = 1$.

$$v_i(X) = \int_{x \in X} f_i(x) dx$$



$$v_i(X) = \int_{x \in X} f_i(x) dx$$





Fairness notions

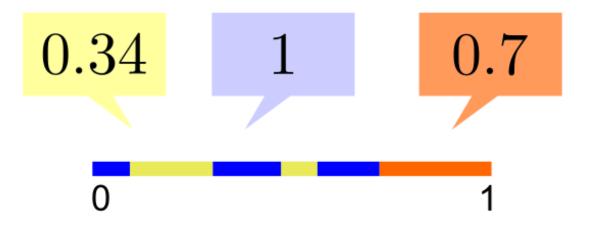
• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

> Proportionality [Steinhaus, 1948]

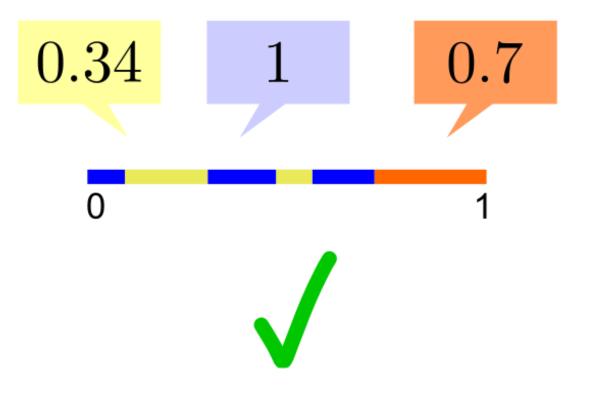
• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

> Proportionality [Steinhaus, 1948]



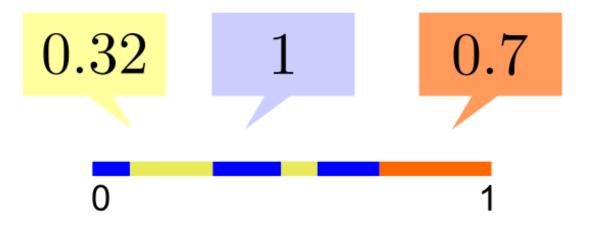
• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

> Proportionality [Steinhaus, 1948]



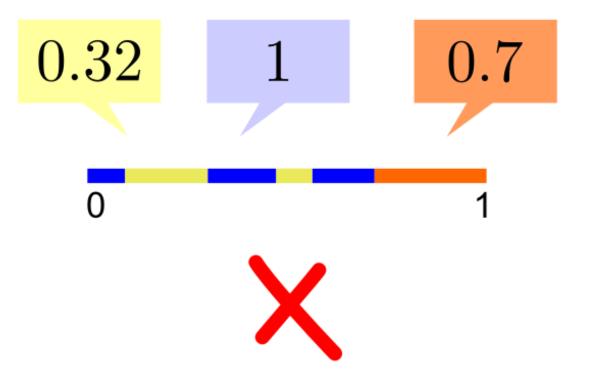
• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

> Proportionality [Steinhaus, 1948]



• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

> Proportionality [Steinhaus, 1948]

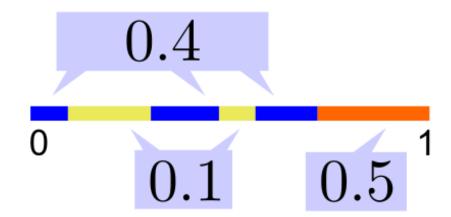


• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

Envy-freeness

[Gamow and Stern, 1958; Foley, 1967]

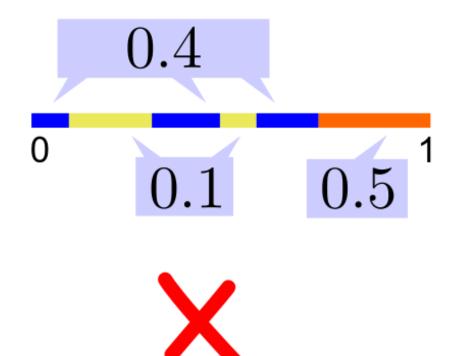
• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.



Envy-freeness

[Gamow and Stern, 1958; Foley, 1967]

• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.



Envy-freeness

[Gamow and Stern, 1958; Foley, 1967]

• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

Proportionality [Steinhaus, 1948]

for each agent i, $v_i(A_i) \ge \frac{1}{n}$

Envy-freeness

[Gamow and Stern, 1958; Foley, 1967]

• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

Proportionality [Steinhaus, 1948]

for each agent i, $v_i(A_i) \ge \frac{1}{n}$

Envy-freeness

[Gamow and Stern, 1958; Foley, 1967]

for every pair of agents
$$i, j$$
,
 $v_i(A_i) \ge v_i(A_j)$

For two agents (n=2), is one property stronger than the other?

• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

Proportionality [Steinhaus, 1948]

for each agent i, $v_i(A_i) \ge \frac{1}{n}$

Envy-freeness

[Gamow and Stern, 1958; Foley, 1967]

for every pair of agents
$$i, j$$
,
 $v_i(A_i) \ge v_i(A_j)$

What about three or more agents?

• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

Proportionality [Steinhaus, 1948]

for each agent i, $v_i(A_i) \ge \frac{1}{n}$

Envy-freeness

[Gamow and Stern, 1958; Foley, 1967]

for every pair of agents
$$i, j$$
,
 $v_i(A_i) \ge v_i(A_j)$

EF implies Prop for any number of agents

• Allocation/Division: A partition $(A_1, A_2, ..., A_n)$ of the cake [0,1] where each A_i is a piece of cake.

Proportionality [Steinhaus, 1948]

for each agent i, $v_i(A_i) \ge \frac{1}{n}$

Envy-freeness

[Gamow and Stern, 1958; Foley, 1967]

for every pair of agents
$$i, j$$
,
 $v_i(A_i) \ge v_i(A_j)$

EF implies Prop for *any* number of agents Prop implies EF for *two* agents (but no more)

Types of queries that can be used to access the valuation functions

Types of queries that can be used to access the valuation functions

 $eval_i(x,y)$: returns $v_i([x,y])$

 $\operatorname{cut}_i(x,\alpha)$: returns y such that $v_i([x,y]) = \alpha$

Types of queries that can be used to access the valuation functions

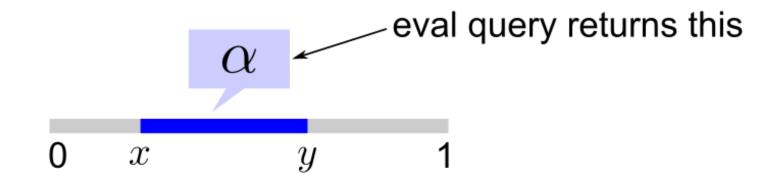
 $eval_i(x, y)$: returns $v_i([x, y])$

 $\operatorname{cut}_i(x, \alpha)$: returns y such that $v_i([x, y]) = \alpha$

Types of queries that can be used to access the valuation functions

 $eval_i(x, y)$: returns $v_i([x, y])$

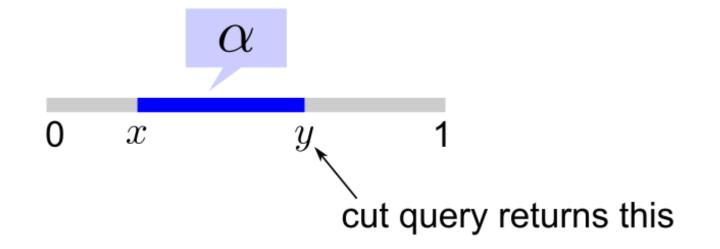
 $\operatorname{cut}_i(x, \alpha)$: returns y such that $v_i([x, y]) = \alpha$



Types of queries that can be used to access the valuation functions

 $eval_i(x, y)$: returns $v_i([x, y])$

 $\operatorname{cut}_i(x, \alpha)$: returns y such that $v_i([x, y]) = \alpha$



Cake-Cutting Algorithms

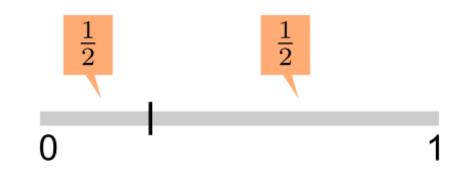
Let's start by thinking about proportionality for two agents.

1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

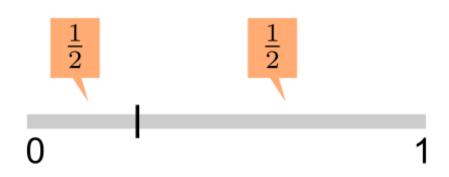
1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

0

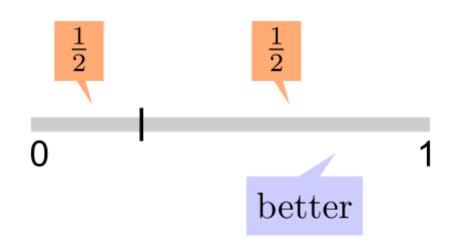
1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).



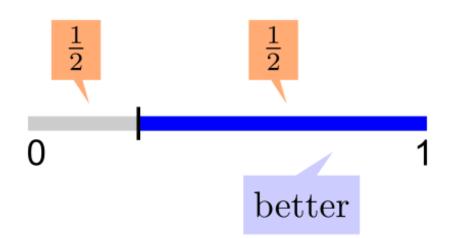
1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).



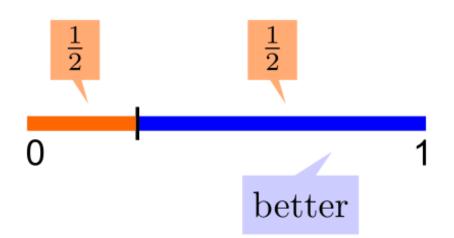
1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).



1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

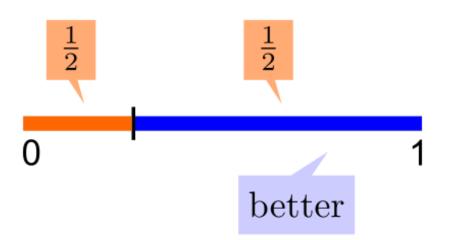


1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).



1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

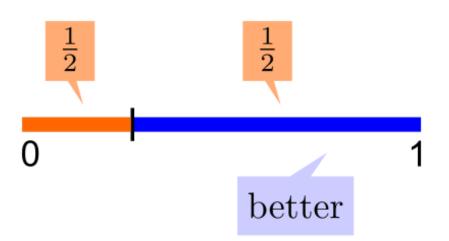
2. Agent 2 chooses its preferred piece (as per v_2), and agent 1 gets the remaining piece.



Is the cut-and-choose outcome proportional?

1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

2. Agent 2 chooses its preferred piece (as per v_2), and agent 1 gets the remaining piece.

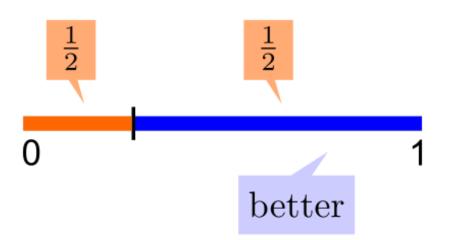


Is the cut-and-choose outcome proportional?

Yes! Agent 2's value is at least 1/2. Agent 1's value is exactly 1/2.

1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

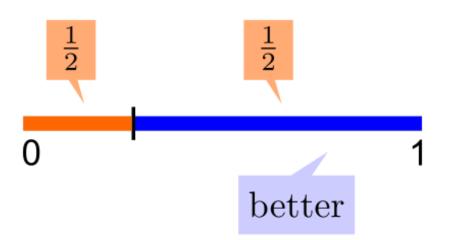
2. Agent 2 chooses its preferred piece (as per v_2), and agent 1 gets the remaining piece.



Is the cut-and-choose outcome envy-free?

1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

2. Agent 2 chooses its preferred piece (as per v_2), and agent 1 gets the remaining piece.

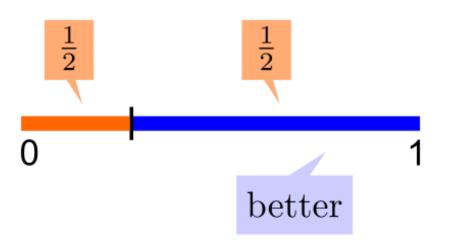


Is the cut-and-choose outcome envy-free?

Yes! EF and Prop are equivalent for two agents.

1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

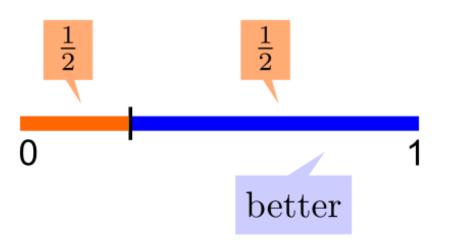
2. Agent 2 chooses its preferred piece (as per v_2), and agent 1 gets the remaining piece.



Can cut-and-choose be implemented in the Robertson-Webb model?

1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

2. Agent 2 chooses its preferred piece (as per v_2), and agent 1 gets the remaining piece.

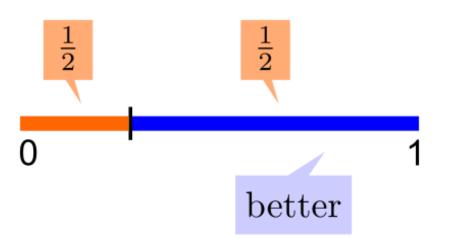


Can cut-and-choose be implemented in the Robertson-Webb model?

 $y = \operatorname{cut}_1(0, 1/2)$

1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

2. Agent 2 chooses its preferred piece (as per v_2), and agent 1 gets the remaining piece.

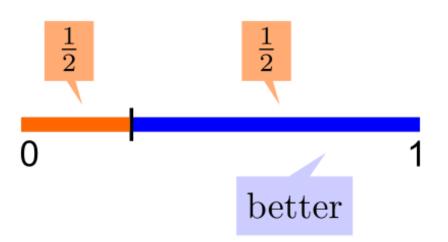


Can cut-and-choose be implemented in the Robertson-Webb model?

 $y = \operatorname{cut}_1(0, 1/2)$ $\operatorname{eval}_2(0, y)$

1. Agent 1 cuts the cake into two equally-valued pieces (as per v_1).

2. Agent 2 chooses its preferred piece (as per v_2), and agent 1 gets the remaining piece.



For two agents, an envy-free/proportional cake division can be computed using two queries.

A proportional cake division protocol for any number of agents

1. A referee gradually moves a knife from left to right.

- 1. A referee gradually moves a knife from left to right.
- As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".

- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.

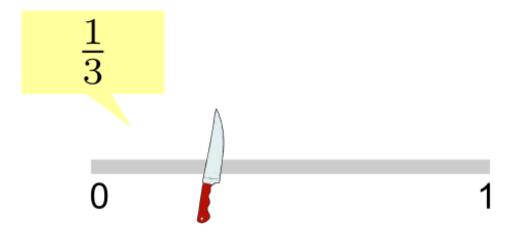
- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

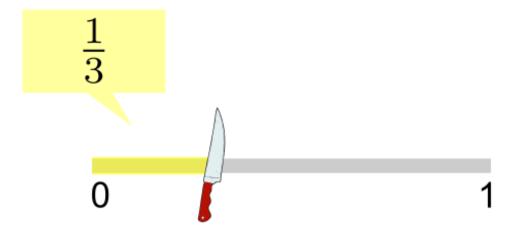
- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

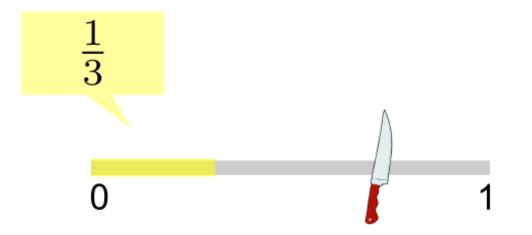
- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.



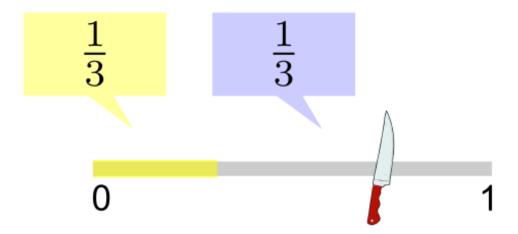
- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.



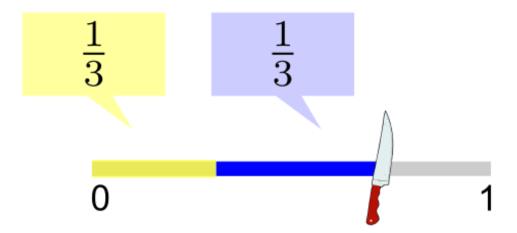
- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.



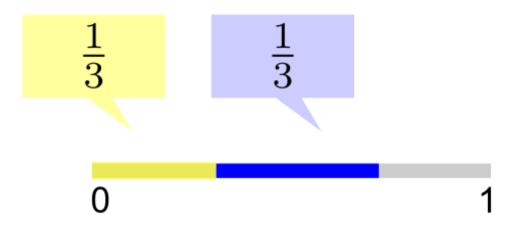
- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.



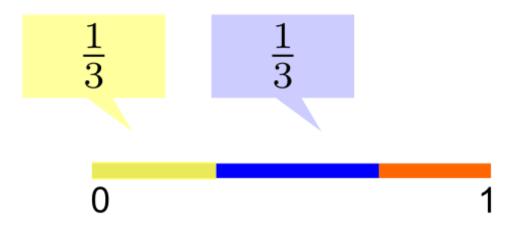
- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.



- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.



- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.



- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

Why is the resulting allocation proportional?

- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

Why is the resulting allocation proportional?

Every agent except for the last one gets *exactly* 1/n. The last agent gets *at least* 1/n.

- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

Can this procedure be implemented in the Robertson-Webb model?

- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

Can this procedure be implemented in the Robertson-Webb model?

Yes!

- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

Query complexity in the Robertson-Webb model?

- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

Query complexity in the Robertson-Webb model?

 $\mathcal{O}(n^2)$ queries (Exercise)

- 1. A referee gradually moves a knife from left to right.
- 2. As soon as the piece to the left of the knife is worth 1/n to some agent, it shouts "stop".
- 3. The said agent is assigned the left-side piece and is removed.
- 4. The procedure repeats with the remaining agents.

For *n* agents, a proportional cake division can be computed using $O(n^2)$ queries.

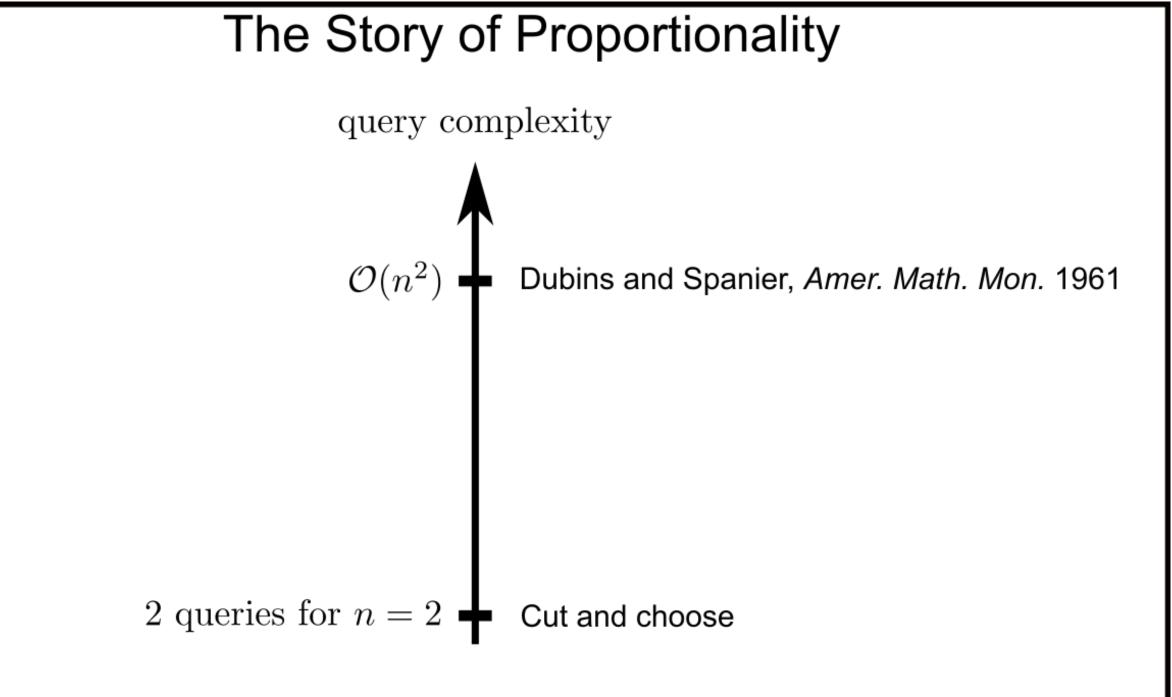
The Story of Proportionality

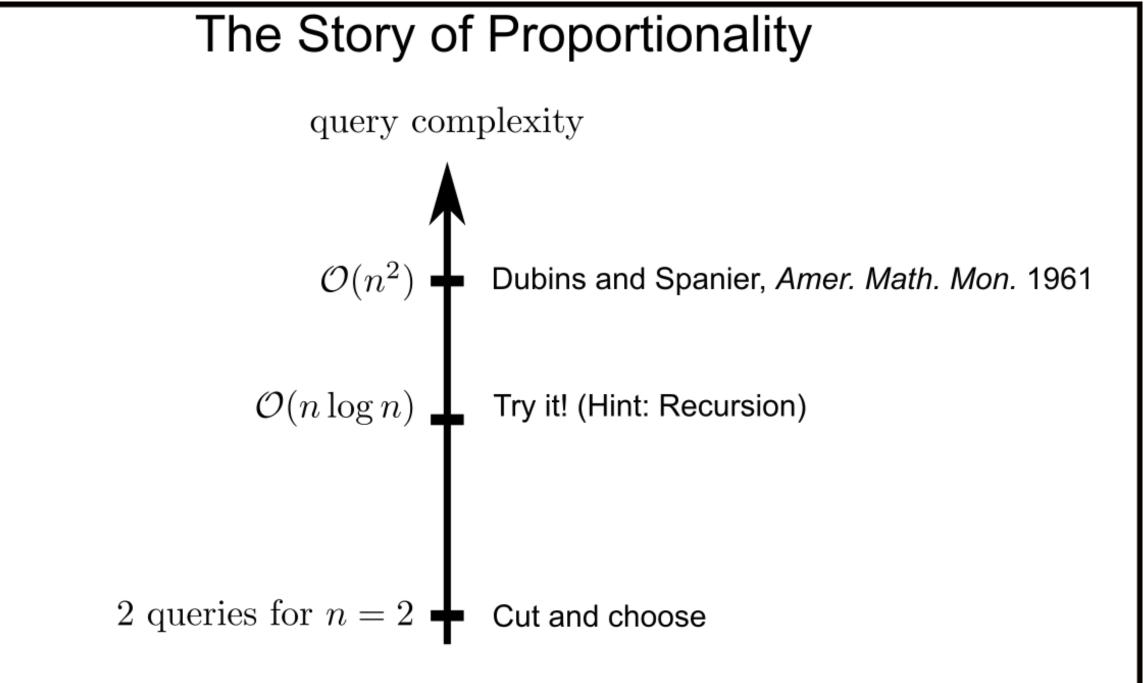
The Story of Proportionality

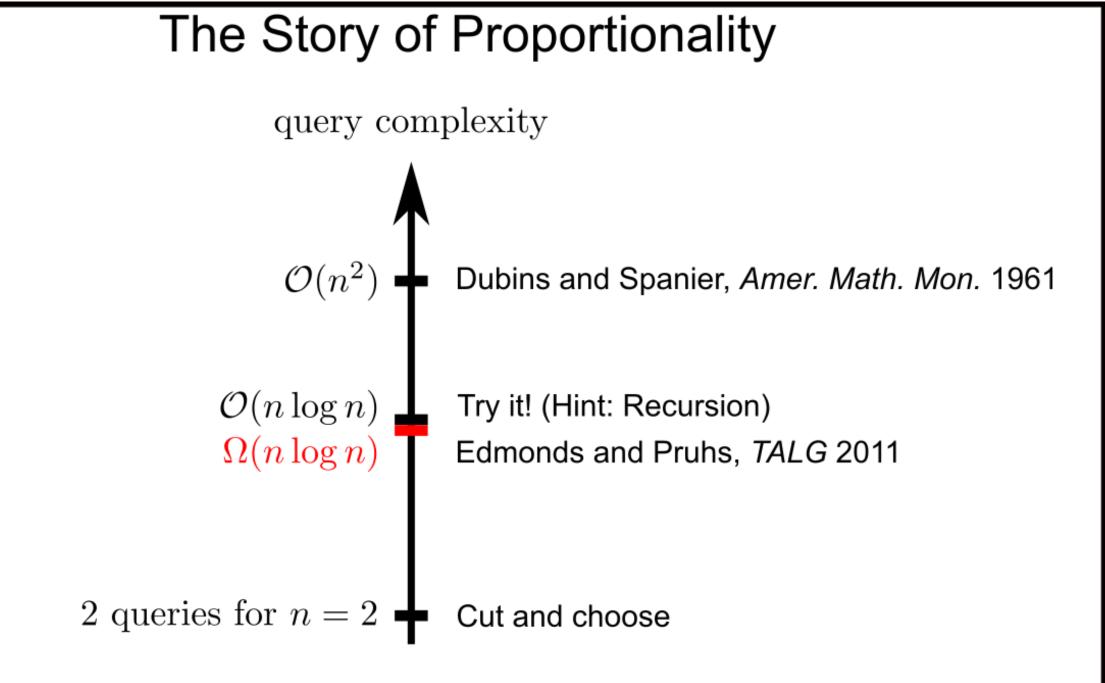
query complexity

The Story of Proportionality

query complexity







The Story of Envy-freeness

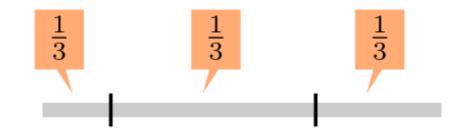
An envy-free cake division protocol for three agents

Phase 1

Phase 1

Phase 1

Phase 1



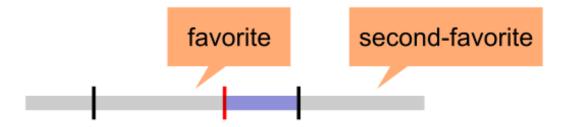
Phase 1

Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

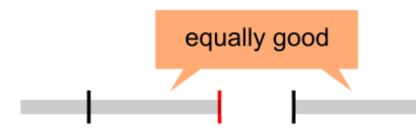


- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

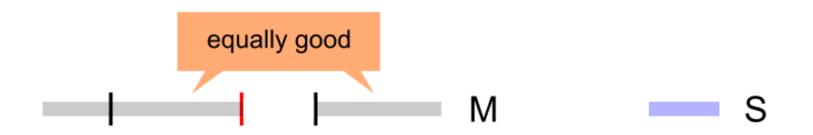
- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.



- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.
 - Trimmings = S; Main cake M; Original cake = $M \cup S$



- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.
 - Trimmings = S; Main cake M; Original cake = $M \cup S$



Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.
 - Trimmings = S; Main cake M; Original cake = $M \cup S$

Μ

Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.
 - Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Μ

Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.
 - Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Agent B must pick the trimmed piece if agent C does not.

Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.
 - Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.
• Agent B must pick the trimmed piece if agent C does not.

Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

• Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Agent B must pick the trimmed piece if agent C does not.

Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

• Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Agent B must pick the trimmed piece if agent C does not.

Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

• Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Agent B must pick the trimmed piece if agent C does not.

Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

• Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Agent B must pick the trimmed piece if agent C does not.

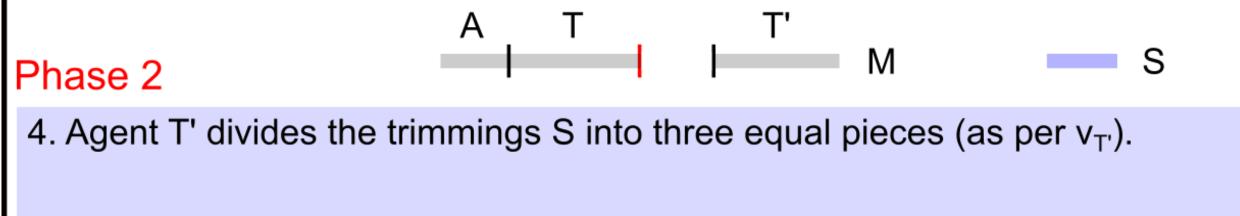
Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

• Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Agent B must pick the trimmed piece if agent C does not.



Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

• Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Agent B must pick the trimmed piece if agent C does not.

A T T'
Phase 2
4. Agent T' divides the trimmings S into three equal pieces (as per
$$v_{T'}$$
).

Phase 1

P

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

• Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Agent B must pick the trimmed piece if agent C does not.

Let T = owner of the trimmed piece (T = B or C); let T' = $B \cup C \setminus T$.

4. Agent T' divides the trimmings S into three equal pieces (as per $v_{T'}$).

5. Agent T, then A, then T', in that order, pick a piece each from trimmings S.

Phase 1

- 1. Agent A divides the cake into three equal pieces (as per v_A).
- 2. Agent B trims its favorite piece to create a two-way with its second-favorite.

• Trimmings = S; Main cake M; Original cake = $M \cup S$

3. Agent C, then B, then A, in that order, pick a piece each from main cake M.

Agent B must pick the trimmed piece if agent C does not.

Let T = owner of the trimmed piece (T = B or C); let T' = $B \cup C \setminus T$.

4. Agent T' divides the trimmings S into three equal pieces (as per v_{T}).

5. Agent T, then A, then T', in that order, pick a piece each from trimmings S.

Is any part of the cake left unassigned in the final allocation?

• Is any part of the cake left unassigned in the final allocation? No.

• Is the final allocation envy-free from agent C's perspective?

• Is the final allocation envy-free from agent C's perspective? Yes.

- Is the final allocation envy-free from agent C's perspective? Yes.
 - Within the main cake M, C does not envy A or B because it chooses first.

- Is the final allocation envy-free from agent C's perspective? Yes.
 - Within the main cake M, C does not envy A or B because it chooses first.
 - Within the trimmings S, C does not envy A or B because:

- Is the final allocation envy-free from agent C's perspective? Yes.
 - Within the main cake M, C does not envy A or B because it chooses first.
 - Within the trimmings S, C does not envy A or B because:

• If C is T, then it chooses first in S.

- Is the final allocation envy-free from agent C's perspective? Yes.
 - Within the main cake M, C does not envy A or B because it chooses first.
 - Within the trimmings S, C does not envy A or B because:
 - If C is T, then it chooses first in S.
 - If C is T', then it divides S into three equal pieces.

- Is the final allocation envy-free from agent C's perspective? Yes.
 - Within the main cake M, C does not envy A or B because it chooses first.
 - Within the trimmings S, C does not envy A or B because:
 - If C is T, then it chooses first in S.
 - If C is T', then it divides S into three equal pieces.
 - By additivity across $M \cup S$, C does not envy A or B w.r.t. the entire cake.

Is the final allocation envy-free from agent B's perspective?

Is the final allocation envy-free from agent B's perspective? Yes.

- Is the final allocation envy-free from agent B's perspective? Yes.
 - Within the main cake M, B does not envy A or C because of two-way tie.

- Is the final allocation envy-free from agent B's perspective? Yes.
 - Within the main cake M, B does not envy A or C because of two-way tie.
 - Within the trimmings S, B does not envy A or C because:

- Is the final allocation envy-free from agent B's perspective? Yes.
 - Within the main cake M, B does not envy A or C because of two-way tie.
 - Within the trimmings S, B does not envy A or C because:

• If B is T, then it chooses first in S.

- Is the final allocation envy-free from agent B's perspective? Yes.
 - Within the main cake M, B does not envy A or C because of two-way tie.
 - Within the trimmings S, B does not envy A or C because:
 - If B is T, then it chooses first in S.
 - If B is T', then it cuts S into three equal pieces.

- Is the final allocation envy-free from agent B's perspective? Yes.
 - Within the main cake M, B does not envy A or C because of two-way tie.
 - Within the trimmings S, B does not envy A or C because:
 - If B is T, then it chooses first in S.
 - If B is T', then it cuts S into three equal pieces.
 - By additivity across $M \cup S$, B does not envy A or C w.r.t. the entire cake.

Is the final allocation envy-free from agent A's perspective?

• Is the final allocation envy-free from agent A's perspective? Yes.

- Is the final allocation envy-free from agent A's perspective? Yes.
 - Within the main cake M, A does not envy B or C because it was the cutter and it never gets the trimmed piece.

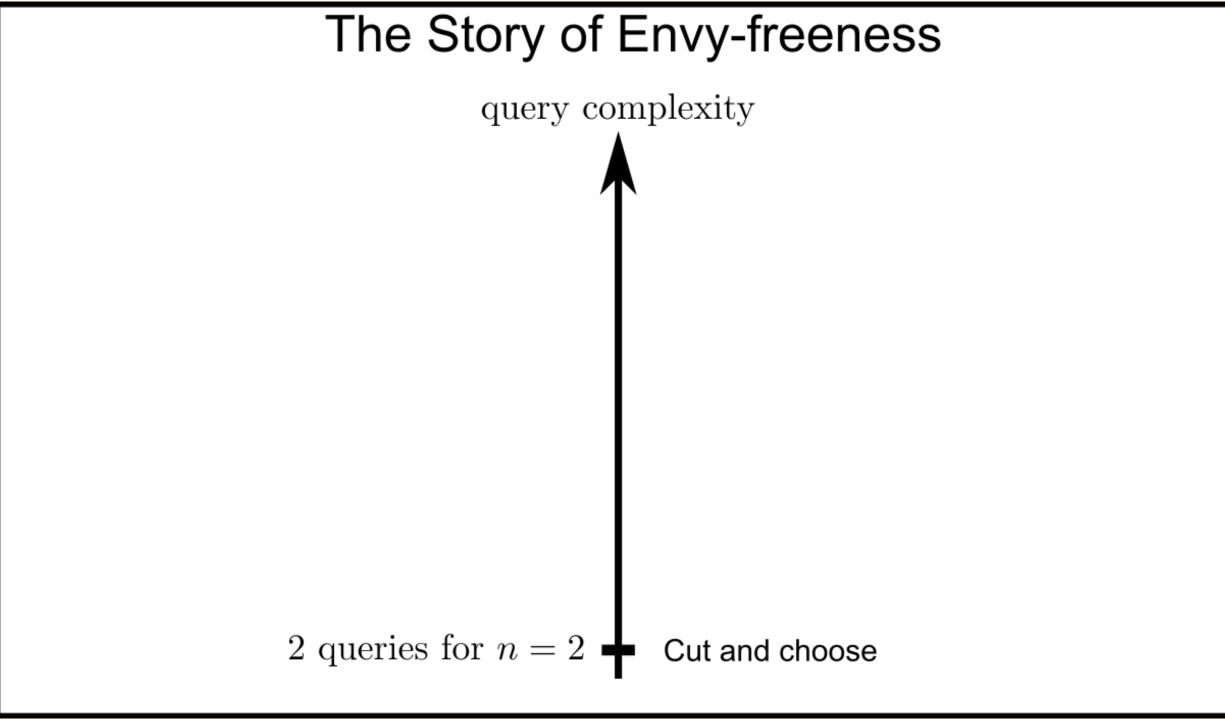
- Is the final allocation envy-free from agent A's perspective? Yes.
 - Within the main cake M, A does not envy B or C because it was the cutter and it never gets the trimmed piece.
 - Within the trimmings S, A does not envy:

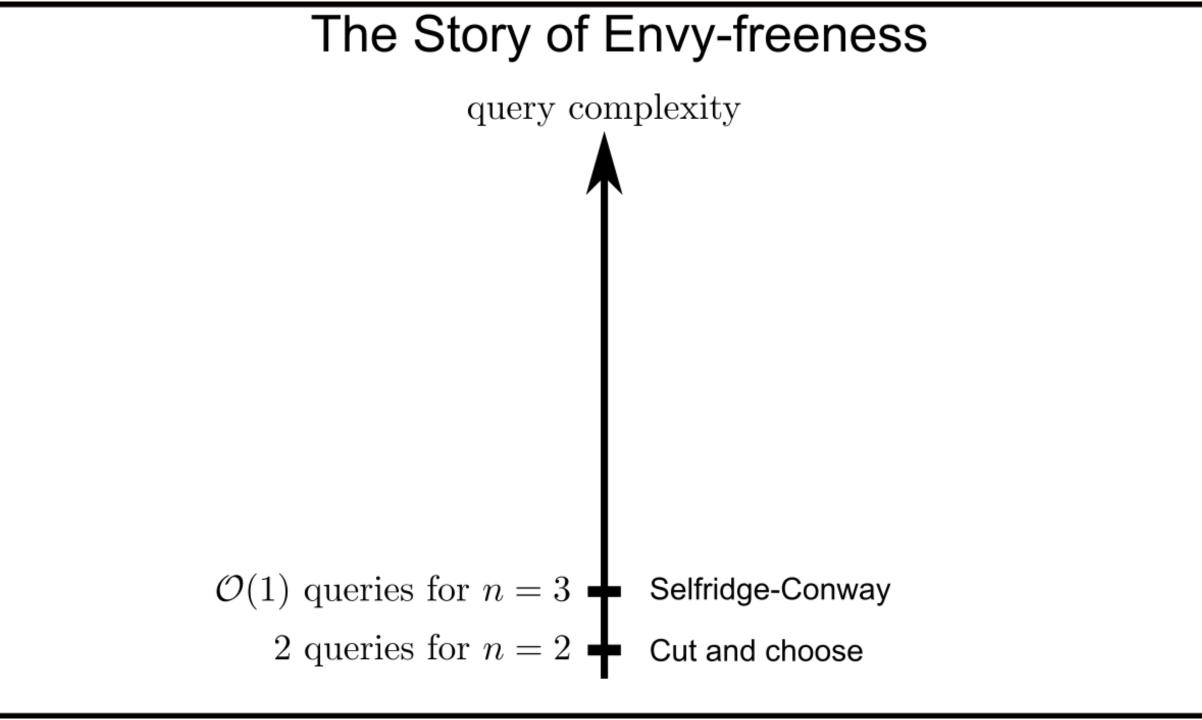
- Is the final allocation envy-free from agent A's perspective? Yes.
 - Within the main cake M, A does not envy B or C because it was the cutter and it never gets the trimmed piece.
 - Within the trimmings S, A does not envy:
 - T' because it picks before T' does.

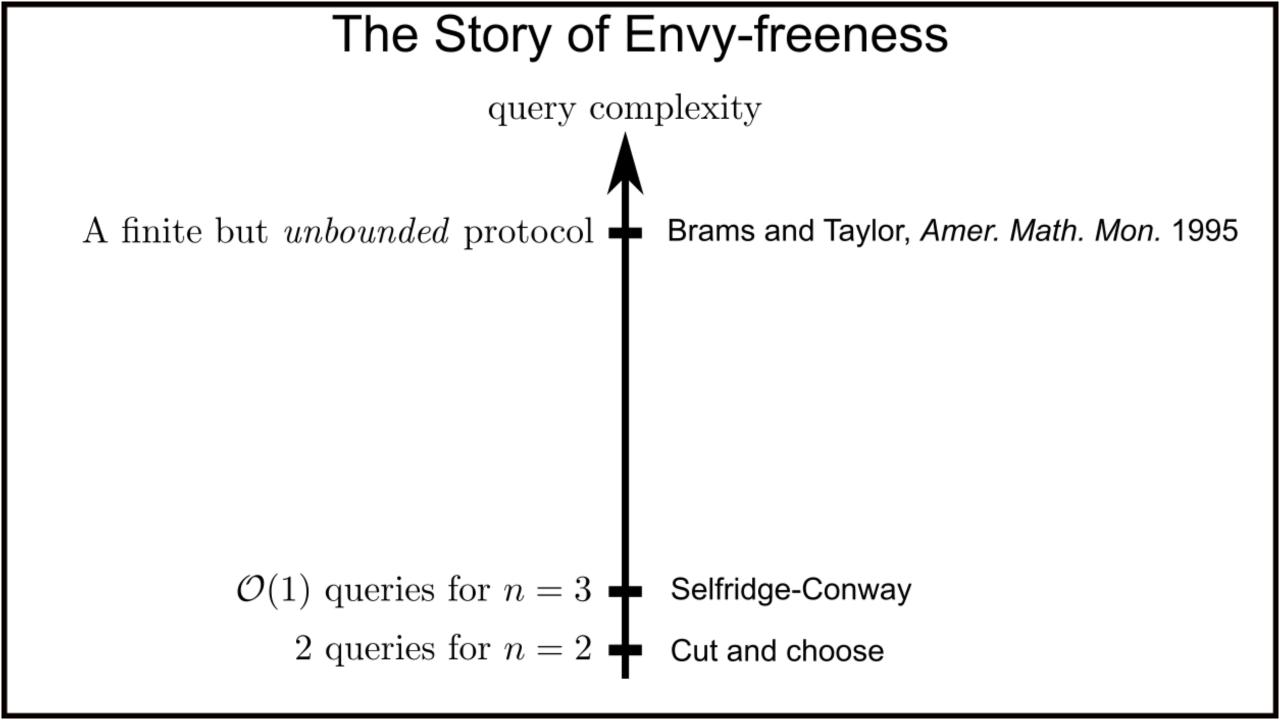
- Is the final allocation envy-free from agent A's perspective? Yes.
 - Within the main cake M, A does not envy B or C because it was the cutter and it never gets the trimmed piece.
 - Within the trimmings S, A does not envy:
 - T' because it picks before T' does.
 - T because of "irrevocable advantange" from Phase 1.

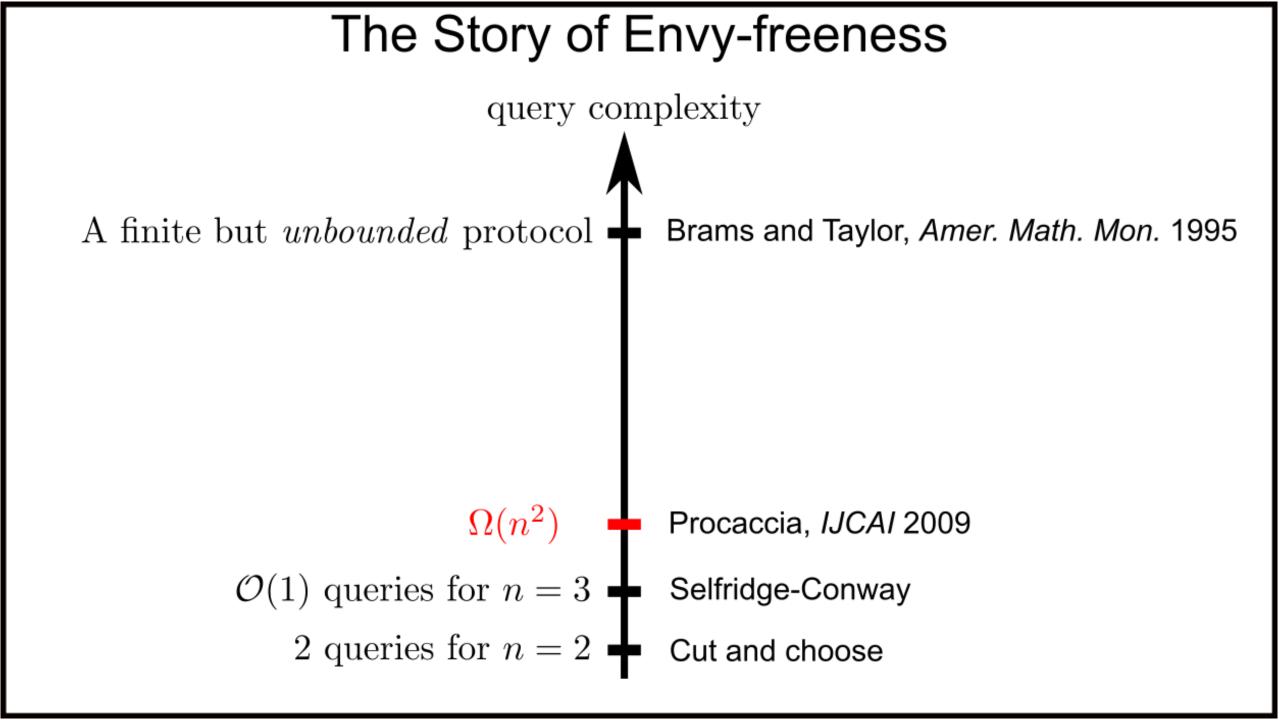
- Is the final allocation envy-free from agent A's perspective? Yes.
 - Within the main cake M, A does not envy B or C because it was the cutter and it never gets the trimmed piece.
 - Within the trimmings S, A does not envy:
 - T' because it picks before T' does.
 - T because of "irrevocable advantange" from Phase 1.
 - By additivity across $M \cup S$, A does not envy B or C w.r.t. the entire cake.

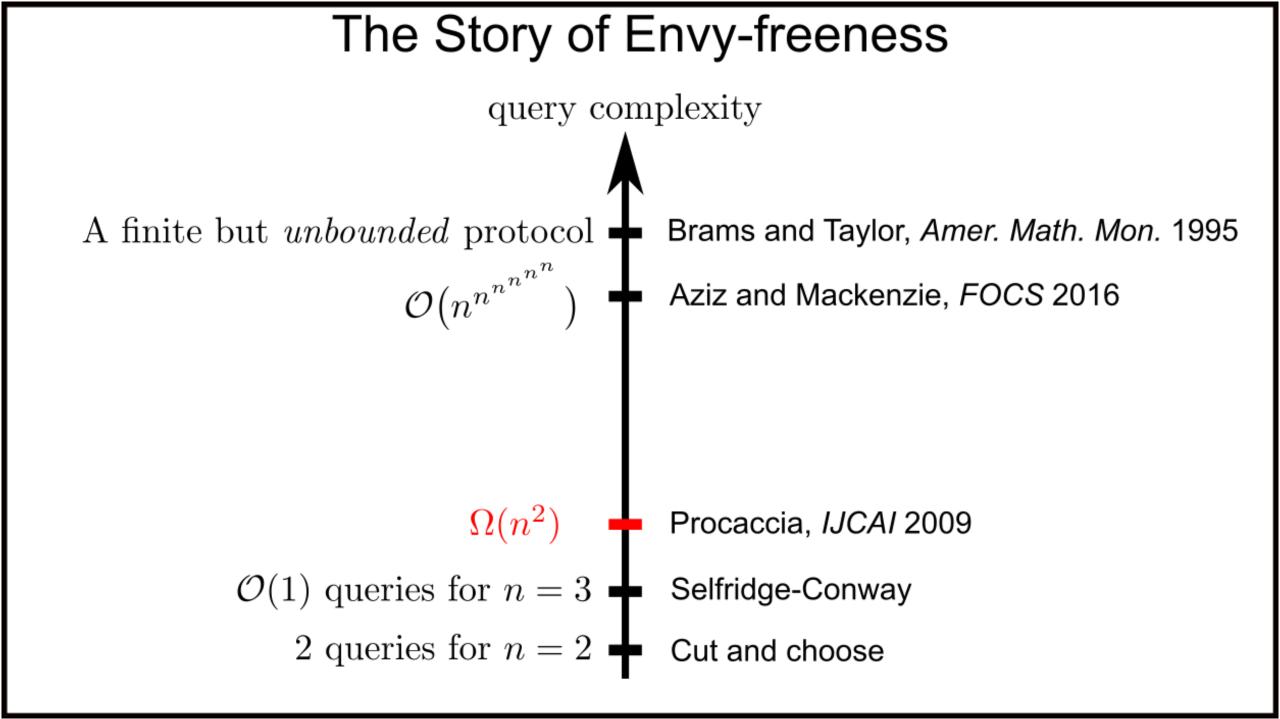
The Story of Envy-freeness

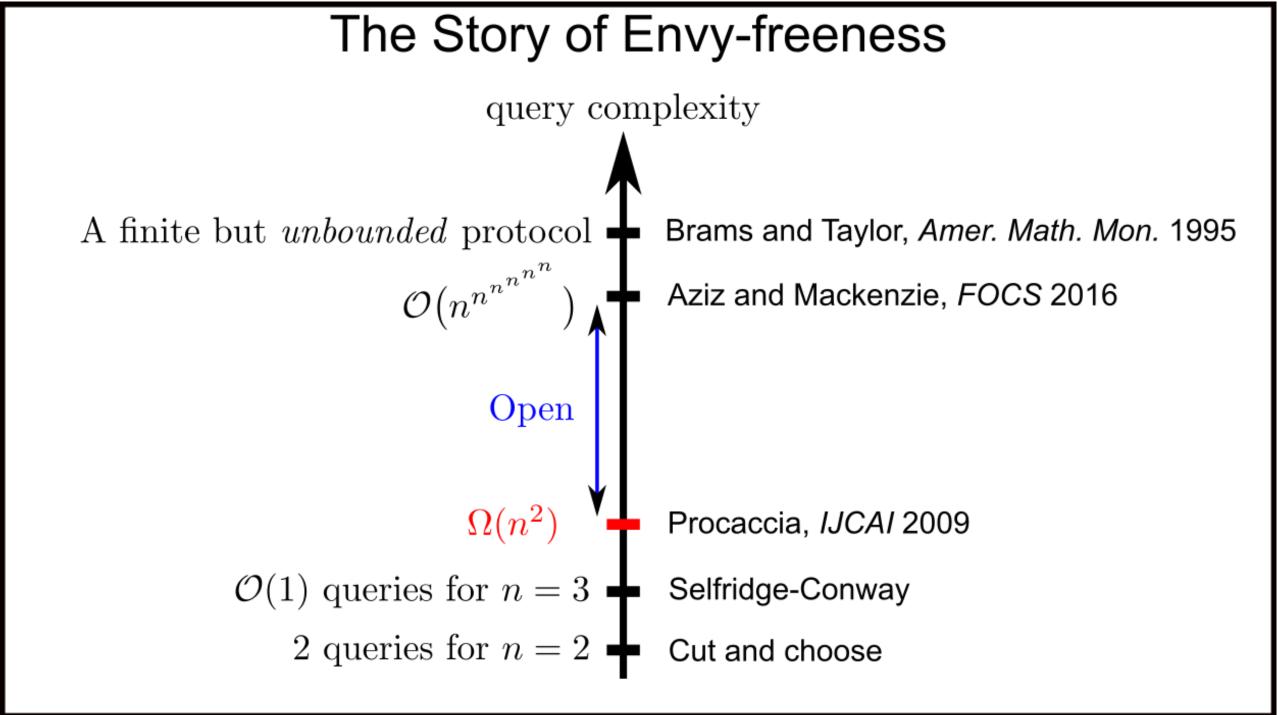












Next Time

Fair Rent Division

References

• Introduction to cake-cutting algorithms.

Ariel Procaccia "Cake Cutting Algorithms" Chapter 13 in Handbook of Computational Social Choice

 Lecture by Ariel Procaccia on "Cake cutting" in the Optimized Democracy course. <u>https://sites.google.com/view/optdemocracy/schedule</u>